R Libraries for Remote Sensing Data Classification by K-Means Clustering and NDVI Computation in Congo River Basin, DRC
نویسندگان
چکیده
In this paper, an image analysis framework is formulated for Landsat-8 Operational Land Imager and Thermal Infrared Sensor (OLI/TIRS) scenes using the R programming language. The libraries of are shown to be effective in remote sensing data processing tasks, such as classification k-means clustering computing Normalized Difference Vegetation Index (NDVI). processed integration RStoolbox, terra, raster, rgdal auxiliary packages R. proposed approach designed exploit parameters bands cues detect land cover types vegetation corresponding spectral reflectance objects represented on Earth’s surface. Our method at time series images taken various periods monitor landscape dynamics middle part Congo River basin, Democratic Republic (DRC). Whereas previous approaches primarily used Geographic Information System (GIS) software, we explicitly use scripting methods satellite by applying extended functionality application scripts geospatial robust compared with traditional due its high automation machine-based graphical processing. algorithms adjusted spatial operations, projections transformations, object topology, map algebra. include OLI-TIRS covering three regions along river, Bumba, Basoko Kisangani, years 2013, 2015 2022. We also validate performance handling cartographic visualization visualising changes calculation NDVI analysis.
منابع مشابه
Wetlands mapping in the Central African Congo River Basin using remote sensing multisource data
Wetlands are areas inundated or saturated by surface or ground water at a frequency and duration sufficient to support a prevalence of vegetation adapted for life in saturated conditions (Federal register, Circular 33; 1984). There is no clear boundary between open water and wetland on the one hand and wetland and terrestrial communities on the other hand (Bradbury and Grace, 1983). Wetlands ar...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملRelational Features of Remote Sensing Image Classification using Effective K-Means Clustering
The feature based classification of remotely sensed image is used to assign corresponding levels with respect to groups with homogeneous characteristics, with the aim of discriminating multiple objects from each other within the image. Every level of an image is called class. This will be executed on the basis of spectral or spectrally defined features such as density, texture and many other th...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2022
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app122412554